

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 2029-2032

Tetrahedron Letters

A simple strategy for the synthesis of optically pure *trans*-hydrindane systems

Ganesh Pandey* and Sanjay B. Raikar

Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune 411008, India

Received 9 November 2005; revised 20 December 2005; accepted 11 January 2006 Available online 3 February 2006

Abstract—A new strategy for the synthesis of optically pure *trans*-hydrindane systems is reported from an easily available starting material.

© 2006 Elsevier Ltd. All rights reserved.

A multitude of bioactive natural products such as steroids, hormones, vitamin D, some of the higher terpenes and related natural products contain a trans-hydrindane moiety as a core structural feature.¹ In particular, the trans-hydrindane moiety of 1a,25-dihydroxyvitamin D₃, functionalized at C-12 is shown to modulate strongly, the affinity of the vitamin D receptors.^{2a} Similarly, C-16 substituted 1α ,25-dihydroxyvitamin D₃ is also known^{2b} to alter the ligand-enzyme interactions causing significant slowing down of the rate of the enzymatic side-chain oxidation. Therefore, there has been intense research activity over the years towards developing a suitable synthetic strategy for the construction of substituted *trans*-hydrindane moieties.^{1b,2b} The principal challenge in the synthesis of this moiety lies in the construction of *trans*-stereocenters at the ring junction. The known synthetic routes for the preparation of this moiety may be categorized into three classes as depicted in Scheme 1.

Although, stereoselective reduction of the double bond at the ring junction in Hajos–Parrish–Wiechert type ketones (type I approach)³ represents one of the most explored strategies, the dependence of stereoselectivities on the stereoelectronic features of R^1 and R^2 limits its utility. The type II approaches, in which the *trans*hydrindane skeleton is constructed in one-step directly from acyclic precursors either by polyene cyclization or an intramolecular Diels–Alder reaction (IMDA), suf-

Type I: Reduction of the double bond at the ring junction of Hajos-Parrish-Wiechert (H-P-W) type ketones.

Type II: Direct one-step construction of the trans-hydrindane skeleton from acyclic precursors

Type III: Stereoselective annulation of either six-membered rings over five-membered rings or vice-versa.

Scheme 1. Synthetic routes to the *trans*-hydrindane skeleton.

fer from low stereocontrol in general.³ Furthermore, this strategy may not be suitable for the synthesis of functional derivatives of the hydrindane moiety. The best stereochemical control has been achieved through type III approaches involving stereoselective annulation of either cyclopentane over cyclohexane or vice versa. However, these approaches suffer from the difficulty of

Keywords: Stereoselective synthesis; *trans*-Hydrindane; Terpenes; Claisen rearrangement; Vicinal stereocenters; Fused rings system.

^{*} Corresponding author. Tel.: +91 20 2590 2324; fax: +91 20 2589 3513; e-mail: gp.pandey@ncl.res.in

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.01.038

procuring suitably substituted six- or five-membered ring precursors.

Therefore, considering the importance of the *trans*hydrindane moiety and the difficulties encountered in its construction, we envisaged a common precursor **2** from which a range of structurally modified *trans*hydrindane derivatives could be synthesized. The synthesis of **2** was envisioned from compound **4** (Scheme 2), easily obtainable from a cheap aromatic starting material using Schultz's asymmetric Birch reduction– alkylation protocol.⁴ In this letter, we describe the success of our endeavors for developing a simple protocol for the synthesis of *trans*-hydrindane systems.

Our synthetic strategy began with the synthesis of a common precursor 2 from ketone 4, readily available by the asymmetric Birch reduction-alkylation protocol (88% yield) developed by Schultz et al.⁴ In this context, 4 was first converted to the corresponding dioxolane derivative 5, which upon LAH reduction⁵ produced the corresponding aldehyde 6 in 89% yield.⁶ The chiral auxiliary was also recovered in 85% yield. Compound 6 was subsequently transformed to ester 7 by NaClO₂ oxidation followed by esterification using diazomethane. Allylic oxidation of 7 using PDC and tert-butylhydroperoxide⁷ followed by reduction under Luche's conditions⁸ gave the corresponding allylic alcohol **8** in 90%yield as a 1:1 diastereomeric mixture, as established by GC as well as ¹H NMR spectral studies. In order to transform this mixture of diastereomers into the pure *trans*-diastereomer, we first converted it into lactone 9, which on methanolysis afforded the corresponding cisisomer.⁹ Mitsunobu inversion of this *cis*-isomer easily produced the desired trans-isomer 3 in 92% yield.¹⁰ Subjecting 3 to the Johnson's orthoester Claisen rearrangement furnished diester 2 (93% yield), which possessed vicinal quaternary and tertiary stereocenters in the desired *trans*-fashion (Scheme 3).¹¹ The stage was now set for exploring the utility of 2 for the synthesis of varied structures of *trans*-hydrindane systems.

In order to synthesize *trans*-hydrindane derivative **15**, compound **2** was first subjected to one carbon homologation, employing the well-known Arndt–Eistert reaction, to give **14** in 78% yield. Dieckmann cyclization of **14** using NaHMDS in THF yielded the corresponding β -ketoester in 94% yield. Finally, demethoxycarbonylation of the β -ketoester was carried out by heating with DABCO in *o*-xylene¹² to afford the *trans*-hydrindane system **15** ($[\alpha]_D^{25}$ +7.38, *c* 0.8, CH₂Cl₂) in 82% yield.¹³

With the successful synthesis of 15, we moved on to prepare compounds 13 and 17 using 2 as a common precursor. For the synthesis of 13, substrate 2 was converted to the corresponding deoxygenated compound 11 via reduction of the corresponding dithiolane derivative 10 using "Bu₃SnH. Our initial experiment for the reduction of 10 by refluxing with "Bu₃SnH and a catalytic amount of AIBN in benzene failed to yield any product. However, refluxing a neat mixture of 10 and "Bu₃SnH with the addition of several small portions of AIBN over a period of 24 h furnished the desired compound 11 in 96% yield.¹⁴ Conversion of 11 to 13 ($[\alpha]_D^{25} + 5.625, c 0.16, CH_2Cl_2$) was achieved in a similar manner as described for 15 (Scheme 4) earlier.¹⁵

During the proposed conversion of compound 2 to 17 via acyloin condensation of 11, it was anticipated that it would produce the *trans*-hydrindane system with an α -hydroxy ketone in the five-membered ring. However, when 11 was subjected to the acyloin condensation by

`OMe

COOMe

Scheme 2. Retrosynthetic strategy.

COOMe

COOEt

Scheme 3. Synthesis of common intermediate 2. Reagents and conditions: (a) $(CH_2OH)_2$, *p*-TsOH, toluene, reflux, 98%; (b) LAH, THF, -20 to 0 °C, 89%; (c) (i) NaClO₂, H₂O₂, CH₃CN/H₂O (1:1.7), 0 °C to rt; (ii) CH₂N₂, Et₂O, 0 °C to rt, 95%; (d) (i) PDC, ^{*t*}BuO₂H, DCM, 10 °C to rt, 68%; (ii) NaBH₄, CeCl₃·7H₂O, MeOH, 0 °C to rt, 90%; (e) (i) LiOH, THF/H₂O (1.3:1), rt, 92%; (ii) BF₃·OEt₂, DCM, 0 °C, 82%; (f) (i) NaOMe, MeOH, reflux, 96%; (ii) DIAD, PPh₃, BZOH, THF, 0 °C to rt; (iii) 1N NaOH, MeOH, rt, 92%; (g) CH₃C(OEt₃, propionic acid, 137 °C, 93%.

Scheme 4. Synthesis of 13, 15, and 17. Reagents and conditions: (a) (i) 10% HCl, THF, rt, 93%; (ii) ethanedithiol, BF₃·OEt₂, DCM, 0 °C to rt, 97%; (b) ^{*n*}Bu₃SnH, AIBN, 130 °C, 96%; (c) (i) 1 equiv NaOH, MeOH, reflux, 87%; (ii) SOCl₂, pyridine, PhH, rt; (iii) CH₂N₂, Et₂O, 0 °C to rt; (iv) Ag₂O, MeOH, reflux, 78%; (d) (i) NaHMDS, THF, 0 °C to rt, 94%; (ii) DABCO, *o*-xylene, 150 °C, 82%; (e) Na, liq. NH₃, -78 °C, 63%; (f) (CH₂OH)₂, *p*-TsOH, toluene, 90 °C, 94%.

treatment with sodium in liquid ammonia at -78 °C, compound **16** was obtained as the major product and the expected α -hydroxy ketone was not produced in isolable amounts.¹⁶ Therefore, compound **16** was subjected to dioxolane protection under controlled conditions (ethylene glycol, *p*-TsOH, toluene, 90 °C, 6 h) to afford **17** ([α]_D²⁵ +6.27 (*c* 0.35, CH₂Cl₂)) as the sole product (Scheme 4).¹⁷

In summary, we have successfully developed a new approach for the stereoselective construction of *trans*-hydrindane systems, present in a large number of bioactive natural products and analogues starting from the readily accessible ketone **4**. The functionalities present at suitable positions provide the means for their conversion into more complex molecular entities. Further studies are in progress to utilize this strategy in the synthesis of some biomedically important compounds possessing vicinal quaternary and tertiary stereocenters in *trans*-fashion in cyclohexane ring systems.

Acknowledgements

S.B.R. thanks CSIR, New Delhi, for the award of Research Fellowship. We sincerely thank Dr. H. R. Sonawane for fruitful discussions.

References and notes

- (a) Zeelen, F. J. Nat. Prod. Rep. 1994, 11, 607–612; (b) Zhu, G.-D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877– 1952; (c) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; John Wiley and Sons: New York, 1989; (d) Nicolaou, K. C.; Sorensen, E. J. Classics in Total Synthesis; VCH: Weinheim, 1996.
- (a) González-Avión, X. C.; Mouriño, A. Org. Lett. 2003, 5, 2291–2293; (b) Posner, G. H.; Kahraman, M. Eur. J. Org. Chem. 2003, 3889–3895.
- Jankowski, P.; Marczak, S.; Wicha, J. *Tetrahedron* 1998, 54, 12071–12150.
- Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras, A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828–7841.
- 5. Addition of **5** to a slurry of LAH in THF led to the formation of the corresponding amine. Aldehyde **6** was

obtained selectively by reverse addition of a slurry of LAH in THF to a stirred solution of **5** at low temperature (-20 °C).

- 6. Compound 6: $|\alpha|_{D}^{25} 30.42$ (*c* 0.76, CHCl₃); IR (film) v_{max} 2957, 1724, 1454, 1361, 1245, 1099, 1026, 756 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.16 (s, 3H), 1.79 (t, J = 6.3 Hz, 2H), 2.14–2.33 (m, 2H), 3.84–4.12 (m, 4H), 5.33 (dt, J = 10.1, 2.0 Hz, 1H), 5.88 (dt, J = 10.2, 3.5 Hz, 1H), 9.68 (s, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 16.4, 24.3, 28.4, 55.5, 64.7, 64.9, 109.4, 127.3, 128.9, 201.3; Anal. Calcd for C₁₀H₁₄O₃ (182.22): C, 65.91; H, 7.71. Found: C, 65.83; H, 8.00.
- Chidambaram, N.; Chandrasekaran, S. J. Org. Chem. 1987, 52, 5048–5051.
- 8. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226-2227.
- 9. Stork, G.; Franklin, P. J. Aust. J. Chem. 1992, 45, 275-284.
- 10. Compound **3**: $[\alpha]_D^{25}$ -42.73 (*c* 0.68, CH₂Cl₂); IR (film) ν_{max} 3447, 2985, 1733, 1438, 1255, 1117, 1038 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.33 (s, 3H), 1.91 (dd, J = 13.7, 4.0 Hz, 1H), 2.46 (dd, J = 13.7, 5.2 Hz, 1H), 3.70 (s, 3H), 3.98-4.07 (m, 4H), 4.29-4.36 (m, 1H), 5.61 (dd, J = 10.0, 0.9 Hz, 1H), 5.90 (dd, J = 9.8, 3.1 Hz, 1H); ¹³C NMR (CDCl₃, 50 MHz) δ 17.9, 38.6, 52.0, 55.7, 63.7 (2C), 68.9, 111.7, 131.5, 133.4, 165.8; GC-MS (*m*/*z*) 228 (M⁺), 180, 166, 152, 137, 112, 107, 93, 74 (100), 60, 41; Anal. Calcd for C₁₁H₁₆O₅ (228.25): C, 57.88; H, 7.07. Found: C, 57.72; H, 6.95.
- 11. Compound **2**: $[\alpha]_D^{25}$ +21.70 (*c* 0.84, CH₂Cl₂); IR (film) ν_{max} 2996, 1736, 1730, 1633, 1440, 1371, 1250, 1053, 712 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.15 (t, J = 7.1 Hz, 3H), 1.54 (s, 3H), 2.12–2.56 (m, 5H), 3.72 (s, 3H), 3.89–4.08 (m, 4H), 4.22 (q, J = 7.0 Hz, 2H), 5.43–5.98 (m, 2H); ¹³C NMR (CDCl₃, 50 MHz) δ 9.1, 22.0, 28.2, 34.4, 36.5, 52.3, 53.0, 63.7, 65.1, 65.4, 112.0, 121.4, 125.6, 173.9 (2C); GC– MS (*m*/*z*) 253 (M⁺–OEt), 237, 227, 210, 195, 181, 169, 152, 151, 125, 107, 86, 79, 57 (100), 43; Anal. Calcd for C₁₅H₂₂O₆ (298.34): C, 60.39; H, 7.43. Found: C, 60.31; H, 7.23.
- Huang, B.-S.; Parish, E. J.; Miles, D. H. J. Org. Chem. 1974, 39, 2647–2648.
- 13. Compound **15**: $[\alpha]_D^{25}$ +7.38 (*c* 0.8, CH₂Cl₂); IR (film) ν_{max} 2964, 1736, 1461, 1404, 1178, 1091, 1043, 910, 732 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.06 (s, 3H), 1.55 (t, J = 6.3 Hz, 2H), 1.85–2.11 (m, 3H), 2.17–2.37 (m, 1H), 2.52–2.71 (m, 1H), 4.11 (s, 4H) 5.54–5.82 (m, 2H); ¹³C NMR (CDCl₃, 50 MHz) δ 18.2, 21.7, 24.6, 33.6, 38.4, 40.7, 65.8 (2C), 114.3, 125.7, 129.1, 221.7; GC–MS (*m*/*z*) 208 (M⁺), 180, 165, 138, 126, 113, 94, 79, 67, 41; Anal. Calcd

for C₁₂H₁₆O₃ (208.26): C, 69.21; H, 7.74. Found: C, 69.07; H, 7.91.

- 14. Compound 11: $[\alpha]_{D}^{25}$ +12.4 (*c* 1.49, CH₂Cl₂). IR (neat film) v_{max} 3022, 2983, 1730, 1654, 1448, 1373, 1247, 1045 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.10$ (s, 3H), 1.26 (t, J = 7.0 Hz, 3H) 1.55–1.80 (m, 2H), 1.85–2.20 (m, 4H), 2.25–2.50 (m, 1H), 3.70 (s, 3H), 4.13 (q, J = 7.0 Hz, 2H), 5.50 (dt, J = 10.2, 2.4 Hz, 1H) 5.67 (dd, J = 10.2, 2.4 Hz, 1H); ¹³C (CDCl₃, 75 MHz) 13.7, 16.3, 21.6, 31.0, 35.7, 36.8, 43.5, 51.5, 60.0, 125.7, 128.0, 172.0, 177.4; GC–MS (m/z) 240 (M⁺), 208, 194, 180, 166, 151, 135, 121, 107, 93, 74, 61, 41; Anal. Calcd for C₁₃H₂₀O₄ (240.30): C 64.98, H 8.39. Found C 65.23, H 8.24.
- 8.39. Found C 65.23, H 8.24. 15. Compound **13**: $[\alpha]_D^{25}$ +5.63 (*c* 0.16, CH₂Cl₂); IR (film) ν_{max} 3020, 2927, 1735, 1217 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.05 (s, 3H,), 1.32–1.41 (m, 2H), 1.60–1.80 (m, 2H), 1.90–2.00 (m, 2H), 2.15–2.40 (m, 3H), 5.52–5.81 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.6, 21.8, 26.2, 27.0, 35.9, 43.6, 47.2, 127.5, 129.0, 223.4; GC–MS (*m*/*z*) 151 (M⁺+1), 137, 110, 109, 95, 79, 57, 41; Anal. Calcd for

C₁₀H₁₄O (150.22): C, 79.96; H, 9.39. Found: C, 79.83; H, 9.62.

- 16. Compound **16**: $[\alpha]_D^{25}$ +5.24 (*c* 0.76, CH₂Cl₂); IR (film) ν_{max} 3020, 1703, 1525, 1398, 1215, 757 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.41 (s, 3H), 1.49–1.72 (m, 2H), 1.84–2.15 (m, 2H), 2.81–2.97 (m, 1H), 5.52–5.81 (m, 2H), 6.45 (d, J = 6.4 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.7, 22.1, 31.4, 44.2, 45.3, 126.6, 128.4, 130.2, 149.6, 209.3; GC–MS (*m*/*z*) 164 (M⁺), 149, 136, 121, 107, 91, 77, 55, 40; Anal. Calcd for C₁₀H₁₂O₂ (164.20): C, 73.15; H, 7.37. Found: C, 72.91; H, 7.55.
- Found: C, 72.91; H, 7.55. 17. Compound 17: $[\alpha]_D^{25}$ +6.27 (*c* 0.35, CH₂Cl₂); IR (film) ν_{max} 2976, 1732, 1455, 1113, 1077 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.07 (s, 3H), 1.33–1.62 (m, 2H), 1.99–2.40 (m, 4H), 2.61–2.80 (m, 1H), 4.02 (s, 4H), 5.48–5.91 (m, 2H); ¹³C NMR (CDCl₃, 50 MHz) δ 21.4, 24.0, 29.1, 31.8, 34.5, 37.3, 76.2 (2C), 116.3, 127.5, 128.4, 218.3; GC–MS (*m/z*) 208 (M⁺), 180, 178, 165, 151, 126, 113, 105, 91, 69, 65, 41; Anal. Calcd for C₁₂H₁₆O₃ (208.26): C, 69.21; H, 7.74. Found: C, 68.98; H, 7.62.